MyResults.Org

PTEN Hamartoma Tumor Syndrome

Text Size:

Overview

What is PTEN hamartoma tumor syndrome? The PTEN hamartoma tumor syndrome (PHTS) includes Cowden syndrome (CS), Bannayan-Riley-Ruvalcaba syndrome (BRRS), PTEN-related Proteus syndrome (PS), and Proteus-like syndrome.

The following text is taken from the Genetics Home Reference (update pending):

Bannayan-Riley-Ruvalcaba syndrome is a genetic condition characterized by a large head size (macrocephaly), multiple noncancerous tumors and tumor-like growths called hamartomas, and dark freckles on the penis in males. The signs and symptoms of Bannayan-Riley-Ruvalcaba syndrome are present from birth or become apparent in early childhood.

At least half of affected infants have macrocephaly, and many also have a high birth weight and a large body size (macrosomia). Growth usually slows during childhood, so affected adults are of normal height and body size. About half of all children with Bannayan-Riley-Ruvalcaba syndrome have intellectual disability or delayed development, particularly the development of speech and of motor skills such as sitting, crawling, and walking. These delays may improve with age.

About half of all people with Bannayan-Riley-Ruvalcaba syndrome develop hamartomas in their intestines, known as hamartomatous polyps. Other noncancerous growths often associated with Bannayan-Riley-Ruvalcaba syndrome include fatty tumors called lipomas and angiolipomas that develop under the skin. Some affected individuals also develop hemangiomas, which are red or purplish growths that consist of tangles of abnormal blood vessels. People with Bannayan-Riley-Ruvalcaba syndrome may also have an increased risk of developing certain cancers, although researchers are still working to determine the cancer risks associated with this condition.

Other signs and symptoms that have been reported in people with Bannayan-Riley-Ruvalcaba syndrome include weak muscle tone (hypotonia) and other muscle abnormalities, thyroid problems, and seizures. Skeletal abnormalities have also been described with this condition, including an unusually large range of joint movement (hyperextensibility), abnormal side-to-side curvature of the spine (scoliosis), and a sunken chest (pectus excavatum).

The features of Bannayan-Riley-Ruvalcaba syndrome overlap with those of another disorder called Cowden syndrome. People with Cowden syndrome develop hamartomas and other noncancerous growths; they also have an increased risk of developing certain types of cancer. Both conditions can be caused by mutations in the PTEN gene. Some people with Bannayan-Riley-Ruvalcaba syndrome have had relatives diagnosed with Cowden syndrome, and other individuals have had the characteristic features of both conditions. Based on these similarities, researchers have proposed that Bannayan-Riley-Ruvalcaba syndrome and Cowden syndrome represent a spectrum of overlapping features known as PTEN hamartoma tumor syndrome instead of two distinct conditions.

Cowden syndrome is a disorder characterized by multiple noncancerous, tumor-like growths called hamartomas and an increased risk of developing certain cancers.

Almost everyone with Cowden syndrome develops hamartomas. These growths are most commonly found on the skin and mucous membranes (such as the lining of the mouth and nose), but they can also occur in the intestine and other parts of the body. The growth of hamartomas on the skin and mucous membranes typically becomes apparent by a person's late twenties.

Cowden syndrome is associated with an increased risk of developing several types of cancer, particularly cancers of the breast, a gland in the lower neck called the thyroid, and the lining of the uterus (the endometrium). Other cancers that have been identified in people with Cowden syndrome include colorectal cancer, kidney cancer, and a form of skin cancer called melanoma. Compared with the general population, people with Cowden syndrome develop these cancers at younger ages, often beginning in their thirties or forties. Other diseases of the breast, thyroid, and endometrium are also common in Cowden syndrome. Additional signs and symptoms can include an enlarged head (macrocephaly) and a rare, noncancerous brain tumor called Lhermitte-Duclos disease. A small percentage of affected individuals have delayed development or intellectual disability.

The features of Cowden syndrome overlap with those of another disorder called Bannayan-Riley-Ruvalcaba syndrome. People with Bannayan-Riley-Ruvalcaba syndrome also develop hamartomas and other noncancerous tumors. Both conditions can be caused by mutations in the PTEN gene. Some people with Cowden syndrome have had relatives diagnosed with Bannayan-Riley-Ruvalcaba syndrome, and other individuals have had the characteristic features of both conditions. Based on these similarities, researchers have proposed that Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome represent a spectrum of overlapping features known as PTEN hamartoma tumor syndrome instead of two distinct conditions.

Some people have some of the characteristic features of Cowden syndrome, particularly the cancers associated with this condition, but do not meet the strict criteria for a diagnosis of Cowden syndrome. These individuals are often described as having Cowden-like syndrome.

Proteus syndrome is a rare condition characterized by overgrowth of the bones, skin, and other tissues. Organs and tissues affected by the disease grow out of proportion to the rest of the body. The overgrowth is usually asymmetric, which means it affects the right and left sides of the body differently. Newborns with Proteus syndrome have few or no signs of the condition. Overgrowth becomes apparent between the ages of 6 and 18 months and gets more severe with age.

In people with Proteus syndrome, the pattern of overgrowth varies greatly but can affect almost any part of the body. Bones in the limbs, skull, and spine are often affected. The condition can also cause a variety of skin growths, particularly a thick, raised, and deeply grooved lesion known as a cerebriform connective tissue nevus. This type of skin growth usually occurs on the soles of the feet and is hardly ever seen in conditions other than Proteus syndrome. Blood vessels (vascular tissue) and fat (adipose tissue) can also grow abnormally in Proteus syndrome.

Some people with Proteus syndrome have neurological abnormalities, including intellectual disability, seizures, and vision loss. Affected individuals may also have distinctive facial features such as a long face, outside corners of the eyes that point downward (down-slanting palpebral fissures), a low nasal bridge with wide nostrils, and an open-mouth expression. For reasons that are unclear, affected people with neurological symptoms are more likely to have distinctive facial features than those without neurological symptoms. It is unclear how these signs and symptoms are related to abnormal growth.

Other potential complications of Proteus syndrome include an increased risk of developing various types of noncancerous (benign) tumors and a type of blood clot called a deep venous thrombosis (DVT). DVTs occur most often in the deep veins of the legs or arms. If these clots travel through the bloodstream, they can lodge in the lungs and cause a life-threatening complication called a pulmonary embolism. Pulmonary embolism is a common cause of death in people with Proteus syndrome.

Resources

We are compiling a list of websites to help you understand genetics and genetic test results. If you would like to suggest other resources for this section, please feel free to This email address is being protected from spambots. You need JavaScript enabled to view it.!
INFORMATION ABOUT GENETICS AND GENETIC TESTING:

Weblink to Genetics Home Reference Genetics Home Reference
Consumer-friendly information about the effects of genetic variations on human health. Federally-supported resources, include reviews of more than 800 genetic diseases and more than 1000 genes.


Weblink to NHGRI Learning ResourcesLearning Resources from the NHGRI
Lots of very good resources from the NHGRI, including major sections about The Human Genome Project, Facts Sheets, and educational resources for teachers and students.


Weblink to National Society of Genetic CounselorsFind a Genetic Counselor
The National Society of Genetic Counselors have a searchable database of genetic counselors. Their website also includes some education materials for patients and healthcare professionals.


Weblink to NHGRI Talking GlossaryNHGRI Talking Glossary
Talking glossary of genetic terms developed by the National Human Genome Research Institute. A huge range of definitions is provided by researchers from around the world.


Weblink to Help Me Understand GeneticsHelp Me Understand Genetics
Help Me Understand Genetics is a handbook from the National Institutes of Health that contain useful information about genetics in clear language and provides links to even more online resources. The entire handbook can also be downloaded as a pdf.


Weblink to the Genetic and Rare Diseases Information CenterGenetic and Rare Diseases Information Center (GARD)
A joint project from The Office of Rare Diseases Research (ORDR) and the National Human Genome Research Institute (NHGRI) that provides searchable information about genetic conditions and rare diseases. It also includes a list of FDA-Approved drugs and other medical products for treating rare disease.


Weblink to NORDNational Organization for Rare Disorders - Resources for Parents/Families
The National Organization for Rare Disorders (NORD) is a volunteer organization dedicated to empowering the rare disease community. Again, they have some very nice web resources.


Weblink to ELSIEthical, Legal and Social Implications Research Program
The ELSI Research Program supports examinations and investigations of the ethical, legal and social implications of genetics research.


Weblink to GINAGenetic Information Nondiscrimination Act of 2008
The Genetic Information Nondiscrimination Act of 2008, also referred to as GINA, is a new federal law that protects Americans from being treated unfairly because of differences in their DNA that may affect their health.


Weblink to Learn.GeneticsLearn.Genetics, University of Utah
Excellent resources, especially for those involved in education. Includes a catalog of animations, videos, interactive features, and virtual labs.


Weblink to the Dolan DNA Learning CenterDolan DNA Leaning Center
The DNALC provides genetics learning resources for teachers and students.


INFORMATION FOR RESEARCHERS:

Weblink to the ClinVar ACMG recommendations pageClinVar: ACMG Recommendations for Reporting of Incidental Findings in Clinical Exome and Genome Sequencing
Clinvar's dedicated ACMG page - a useful jumping-off point to the Genetic Testing Registry, OMIM, MedGen, and local ClinVar pages for each gene.


Weblink to NCBI GeneReviews General pageGene Reviews
Gene Reviews (updated September, 2018)


About

What is the purpose of this information?
Our aim is to provide information about why we do genetic testing. We try to answer some common questions and offer guidance on some personal and practical issues. This information is for anybody with questions about genetic testing for any of the diseases and drugs listed in this site.

Are there geographical differences in testing, service or treatment?
Different centers have different policies in terms of how tests are administered and results shared. However, the results discussed in this document should be relevant to most individuals tested for risk of developing genetic disease.

How is this paid for?
If you received this test as part of the eMERGE research study, neither you nor your insurance company will have to pay anything toward this test

When was this content last updated?
October 10, 2018.

More Questions? The National Society of Genetic Counselors has developed a directory to help locate genetic counseling services near you.
You are here: Home Results Disorders (J-Z) PTEN Hamartoma Tumor Syndrome